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Abstract-This paper presents the determination method of flutter critical wind velocity of hanging roofs and
curved membrane roofs of which outer surface only is exposed to wind, and some numerical results for
fundamental shape of the roofs are illustrated to make clear the influences of curvatures, materials, size
factors and prestressing on this critical velocity, and the dynamic behavior of the roofs subjected to wind.
The procedure to formulate the governing equations is on the basis of classical flow theory with vorticities in
the boundary layer and in the wake from the trailing edge, and the solution is obtained with Galerkin's
procedure.

INTRODUCTION

Pneumatic membrane structures and hanging roofs are rather popular as architectures for the
sake of easy construction and getting wide space economically, but they are of weak stiffness.
Then the analysis of dynamic behavior is among the most important current research bearing on
engineering reliability for them. This report is concerned with the determination of the critical
wind velocity at which flutter occures in these roofs subjected to wind in the longitudinal
direction. In the dynamic analysis of such structures as plates and shells, especially, as hanging
roofs and pneumatic membrane structures subjected to wind, not only the influence from wind to
structures but also the influence from structures to wind should be taken into account. That is, in
flexible structures interaction between structure and stream should be considered.

There are many investigations with regard to only structural vibrations of such roofs
subjected to predetermined external excitation forces available, for instance [1,2], but are few
investigations that have been made concerning this interaction problem. Otherwise, there are
many contributions to panel and shell flutter available, for instance[3-5], for the calculation of
aerodynamic forces due to supersonic flow [6], for bending-torsional fluttering of plate subjected
to wind [7], for panel divergence at subsonic speeds, and elaborate reviewal work on this problem
by Dowell [8]. But most investigations on panel and shell flutter are concerned with aeronautical
structures and problems considered there are restricted in the range of supersonic or transonic,
even in the case titled subsonic, air speeds with flow on both sides of the structures. These
results, therefore, are not directly applicable to flutter problem of closed buildings subjected to
low speed flow, i.e. at most several 10m/sec. The experimental study carried out by Siev [9] for a
model of closed building suggested the existance of the danger of flutter, where he observes
flutter phenomena as vibrations of increasing amplitude induced at a certain air speed. However,
this study did not give the quantitative indications for the designer of these structures.

If the boundary layer thickness of air is on the order of the flutter wave length, viscous effect
will be important as stated by Dowell [8]. But since we deal with extremely low air speeds, low
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frequency flutter, that is, low order deflection mode vibration becomes significant also as shown
in [8], and thence wave length is extremely large compared to the thickness of boundary-layer.
Therefore wind can be assumed to be inviscid potential flow. But in order to determine the
velocity field of ideal potential flow induced with the vibration of the roofs the treatment of the
difference of tangential velocities between wind and boundary structures at boundary seems to
become important, since Siev [9] intimated that flutter is associated with the appearance of
vortices inducing pressure variation vis-a-vis the structures. Therefore to consider the existence
of circulation which is equivalent to a discontinuity in the velocity seems rather realistic than to
leave this difference as it is. Infinitesimally thin vortex sheet, thence, will be introduced between
wind and roofs, and also in the wake from the trailing edge.

By introducing vortex sheets the aerodynamical damping effect on the vibrating roofs varies
from positive to negative according to the increase of wind velocity for every deflection modes of
the roofs, whereas this damping effect is positive or negative constantly according to the
deflection modes without regard to wind velocity in ideal potential flow without vortex sheets.
This indicates that by introducing vortex sheets the self-exciting vibration, that is, flutter of the
roof can be determined at the wind velocity which is lower than divergence critical wind velocity.
Above mentioned treatment appears just as the effect of boundary layer in real situation would be
taken into consideration by replacing the boundary layer zone with vortex sheets. This
assumption seems to be similar to classical wing theory. But in wing theory the wing itself is
replaced by vorticities[IO] because the wind is exposed both sides to air flow, while the roof
considered here is exposed one side to wind. Therefore former results can not be directly
applicable to this problem.

Wind and these vortex sheets will vary according to the movement of vibrating roofs, and
simultaneously the roofs will be affected by this disturbed wind and these vortex sheets. Indoor
air, if such structure as shown in sketch is considered, which is stationary in steady state will be
forced to move in accordance with movement of the roofs, and this air flow also affects the roofs.
In the present report the flutter critical wind velocity of curved membrane roofs and hinging roofs
of no bending rigidity will be examined in scope of linear theory with aforementioned treatment
of air flow.

Reference [8] shows a division of the Mach number, aspect ratio plane into various regions
where different types of flutter predominate for the plates. Refering this, [3] and [9] appearance of
flutter phenomena will be assumed when eigenvalue becomes complex number with negative
damping effect with increased wind velocity in this report. Here the deflection is set as travering
wave mode and with Galerkin's procedure an ordinary differential equation of vibration of the
roof with time as the independent variable is derived. And then flutter critical wind velocity will
be determined as the wind velocity at which eigenvalue takes real value, that is, positive damping
vanishes with increased wind velocity. Since the roofs can be assumed to be stationary under the
action of the steady wind of constant velocity U and vortex sheets due to U, it is sufficient to
treat only the vibration in regard to fluctuating portions of disturbances from steady state.
Divergence critical wind velocity will also be shown.

Although the author recognizes well that to take into consideration the effects of the turbulant
structure of the wind and the separate flow from the front edge is essential in real situation, the
inclusion of these effects complicate the problem awfully and to get the solution analytically may
become impossible. Even the flow is idealized as aforementioned, the results given here will be of
use as an indication for the engineers of these buildings. Moreover, since the length of the
structure is usually very large, the results shown here would be adequate if separate flow from the
front face is reattached in the sufficiently small distance from the front.
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GOVERNING EQUATIONS

The roof is assumed to be shaped as

479

z = z(x, y), (O::s X ::s L, -Yo::s y ::s Yo)

under the action of pretensions Nxo and N yo in static state (t < 0) and z being sufficiently small in
comparison with reference length L (shallow assumption), with the following equilibrium
condition.

where

(t <0) (1)

That is,

t < 0: u = v = w = 0, Nxy = 0, Nx = Nxo , Ny = N yo.

With the application of D'Alambert's principle and the assumption of shallow shape the
kinematic equilibrium equation in state of flexural vibration of the roof of weight M per unit
surface area, Young's modulus E and thickness h is

(2)

By setting stress resultants as

and with the introduction of Airy-type stress function F as

Nx = hF.", Ny = hF,xx, Nxy = - hF,xy

and with the neglection of nonlinear terms equation (2) can be rewritten in the following form.

(3)

Compatibility condition becomes

(4)

DETERMINATION OF AERODYNAMIC FORCE

The variations of vorticities recognized over the roof which is exposed one side to wind only,
unlike to the airfoil case, and in the wake flow from the trailing edge are not independent of the
motion of the roof. Therefore the fluctuating normal load Pz due to wind should be determined
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with the consideration of the behavior of outside and inside air stream-roof interaction system. In
this report wind is assumed as ideal potential flow.

(a) Outside air flow. The motion of the membrane roof wakes local small disturbance of
velocity in the steady wind stream of constant velocity U in the vicinity of this roof. If the
components of this local disturbance velocity are represented as ii, ii, and Hi, and are assumed to
be sufficiently small compared to U, the following interaction relation between disturbance
velocity and the motion of the roof should be satisfied.

= Ii' + Uw.,. (5)

Since velocity difference between wind and the roof exists, the appearance of turbulant
boundary layer should be recognized in real situation. However, as the assumption of ideal
potential flow is employed, this boundary layer zone will be replaced by the thin sheet of vortices
of infinitesimal strength, dissimilarly to airfoil case where airfoil itself is replaced by the sheet of
vortices. Also vortex sheet appears in the waked flow from the trailing edge. Otherwise, since
only fluctuating portion from static state is of significance in the present calculation, only the
treatment of the vortex sheets with respect to small distrubance velocity of wind becomes
significant.

The distribution of bound vorticity per unit area (strength of circulation per unit area) over the
roof and the distribution of free vortex sheet per unit longitudinal length per unit width in the
waked flow, being represented as 'Yc and /,w, respectively, are expressed as the functions with
respect to two spatial variables and variable time as follows,

'Y, == 'Yc (x, y, t), 'Yw = /,w(x, y, t)

with the assumption that the sheets of variable vorticity are so thin that the thickness of these
sheet can be negligible referred to airfoil case, and the deflection of the roof w is sufficiently small
in comparison with other reference lengths of the structures.

It is well known that potential function can be defined in the stream layer containing vortices.
Neglection of y-direction component of distrubance velocity leads the problem of determination
of potential function in three dimensional flow system to that of two dimensional flow system in
x-z plane, and therefore derivative of the potential function with respect to variable deduces the
following relation for arbitrary y.

where

ii -iw ==~fz'~dZ+~f~~dZ
_71'1 z" s-Z ~71'1 z, s-Z

(6)

By setting z = 0,

s == x + iz, i =Y(-1).

w, ==_1 lL~dS +_1 r~ ~dS.
271' 0 x - S 271' JL X - S

(7)
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Equation (7) is of Hilbert integral equation and solution 'Yo becomes as

'Y
=1. (_L-X)1/2{2 (L[_S]1/2_W+ dS+r~[_S]1/2_yw dS}+~C-

o 7r X Jo L - S S - X JL S - L S - x V[x(L - x))"
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(8)

From the condition that 'Yo must be finite at the trailing edge (x = L), c has to vanish. Otherwise,
from the definition of vorticity distribution 'Yo can be given as the difference of velocity
component it+ and that of the roof. That is,

(9)

where Urn is the velocity of the roof in x direction at that point and u+ = it Iz ~o.

Also velocity potential function can be defined in the small disturbance velocity field of the
potential flow portion over the vortex sheet. Since it is assumed in the present treatment that
vortex sheet on the roof is considerably thin, this function can be determined as follows.

(10)

(b) Inside air flow. Air inside the structure is assumed to have no velocity in the static state,
and the movement of the roof wakes the indoor air flow. The inside of the structure is usually so
large that the change of volume of inside air seems to be negligible. If velocity potential is defined
for indoor air flow, it should satisfy the following equation.

(11)

According to the state of surrounding walls, boundary conditions of cP- should be fixed, such as

ocP-1 =w ocP-1 =ocP-1 =ocP-1 =0oz z~o ' ax x~L/2 oy y~±yo oz z~-H .
(11)'

By applying Bernoulli's theorem, the variations of pressure of wind and inside air, which are
of same density po, are

respectively, where terms which contain square of the components of small disturbance velocity
are neglected. Thence, pressure difference Pz which acts as normal load in kinematic state is
obtained as

(12)

SOLUTION

Since number of unknowns exceeds one to that of equations in aforementioned relations, an
additional condition is required. Then the following assumption will be employed here.

As the assumption of ideal potential flow is used here, the variation of the circulation of
vortices over the roof with respect to time is sent forth with the velocity equal to wind as the
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distribution of the free vorticity without decrease. That is,

t, dt + ,/w(L, y, t)U dt = 0 where L = l,L '/, dx.

Otherwise, the sum of circulations with regards to '/e and '/W should vanish.

The variation of this equation with respect to time yields

(13)

(14)

(15)

From the comparison of equation (13) with equation (15) the following condition can be deduced.

Yw(x, y, t) = -U a~ ,/w(x, y, t)

or

with the assumption that

(
X -L),/w(L, y, t) = '/W x, y, t +---u

'}'w(oo, y, t) = O.

(16)

(17)

Equation (16), which is deduced on the basis of assumption equation (17), means that the
change of the distribution of free vorticity in the wake flow is harmonic, and the employment of
equation (16) as one more condition simplify the solution extremely. Despite the adequency of
the assumption equation (17) can not be shown, usage of equation (16) seems to be recognisable
because equation (16) is rigorous condition in state of harmonic vibration of the roof.

Now ten unknowns can be determined as the solutions of ten simultaneous differential
equation identically. To get the analytic solution, however, is extremely difficult and therefore
approximation procedure should be introduced, practically. Application of Galerkin's procedure
seems more suitable than direct numerical calculation for the investigation given here.

In this report traveling wave type deflection mode of the following form, which includes wave
propagation velocity as parameter, will be considered for simply supported boundary.

(18)

where

EX(a) = e-ax

and
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m, n, integer, wL
A =2U'

. _ { i ... a220
J - . = 0

-I ... 0!2<

k, nondimentional wave propagation velocity parameter, that is, wave propagation velocity is
given as uo = 2kU.

By substitution of equation (18) into equation (4), stress function can be obtained as follows,

(19)
where

f3 == j3. 2yo.

In order to satisfy other ordinary boundary conditions it is sufficient to give the deflection w as
the sum of expression (18) of suitable number with different m and n.

Whereas potential function of indoor air should have complicated form so as to satisfy
boundary conditions rigorously, the following approximation will simplify the determination of
potential function. Since it can be seen from equations (11) and (11)' that the motion of indoor air
becomes maximum at z = 0 and diminishes rapidly with getting away from the roof, the
remainder of the boundary conditions (11)' will be satisfied only at z == O.

That is,

ocfJ-1 = OcfJ-1 == 0oX x~L/2 oy Y~"'Y" •
z =0 z =0

(1l)"

Then potential function of indoor air cfJ- should have the following form in order to satisfy
equation (11) and boundary condition (11)".

and function ZI (z) can be determined as

(20)

where
ZI(Z) == C cosh Tfl(z/H + 1) (21)

H,j 2 22
Tfl == L v (al +{ f3 ), C == I/(Tfl sinh 1Jd, 1== 1,2.

Substitution of equation (8) into equation (14) derives finally,

fL [ S JII2. f~ [ S J1/
2

2 Jo L _ S w+ dS +JL S _ L 'Yw dS = O.

According to the assumption equation (16) 'Yw seems to have the following form,

'Yw == AU e-'2A(X-L)/L e'wt cos j3y.

(22)

(23)
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Refering to equations (5), (18) and (22), A can be given as

A =Ft,q A{Cal - 2A)[1o(al/2) - iJl(atl2)] e-i(U"1/2) + (i. j. a2 + 2A)

x [Jo(cd2) - jJ1(cl:2!2)] e-iiUj
.",/2)}. (24

Where

F(A)= Yo(A)+J1(A)-i{Yo(A)-Jo(A)}.

Equations (8), (5) and (23) determine 'Ye.
Since um seems to be negligible compared to u+ in equation (9) and u.,.(x < 0) can be set to be

zero in this problem, potential function of wind stream can be determined as

. d IX - IX .4>+lz ~o = dt 0 u+ dx = - 0 'Ye dx. (25)

Whence aerodynamical normal load Pz rewritten as equation (26) becomes determinate except 00.

(26)

Application of Galerkin's procedure for equation (3) yields an algebraic equation associated
with w in the following form.

(27)

where

v = U / M = U /pm 11 = poLg = PoL pm: equivalent material density\J Ehg \J E' M pmh'

wL w _ wL I M wL Ipm
A = 2U = V and thence w =T \J Ehg =T VE

and Qi = Q.(aJ, (2) are functions of w. Some integral results are shown in Appendix.
Whence, such wind velocity that gives real positive roots of equation (27) is flutter critical

wind velocity, and for that sake real positive A should satisfy the following equation

(28)

because the multiple Qo. Ql takes real value, where Qp represents complex conjugate of Qp.
Note that real positive root A of equation (28), which can be considered as flutter critical
parameter, is independent of the size and material factors of the structure. And also note that
when w takes real value the following relations Qp(-w) = Qp(w) (p ¥ 3), Q3(-W) = -Q3(W) can
be derived and this indicates the adequency of the employment of real positive rooot of equation
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(28). Thence, flutter critical wind velocity can be calculated as
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(29)

in which A is the real positive root of equation (28).
Required solution of equation (28) will be calculated as follows. Decreasing A from extremely

large real value, real positive solution A '= Ao can be found by trial and error method. Check
whether Ao provides real Vcr from equation (29). Then, by setting as A '= Ao - JlAo - iA and by
calculating QI == QI (Ao - JlAo ), A. will be determined from equation (27). If A. is positive, Ao is
solution required.

Statical divergence phenomena appear when Vi' 0, k'l 0 and A~ O. In this state 'Yw '= 'Yc '= 0
and 'Yc'l 0, and than A '= O. Then QI and Q. take real values. From equation (27) divergence
critical wind velocity can be calculated as follows.

(30)

It is evident that this critical velocity is higher than the determined from equation (29).

NUMERICAL EXAMPLE

As a example the most fundamental and popular shape as hanging roof given in the next form
will be considered.

u

Sketch of structures and coordinate system.

4a 2 b 2
Z '=z(x -Lx)-zy.

L Yo
(31)

Then K t and K 2 included in Qt are given as follows.

and
Kx '= aIL,
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rt is well recognized that relatively lower wand flutter critical wind velocity Va are more
significant in the design of these hanging roofs, and Fig. I, which presents (w ~ V,,) relations
associated with some different m and 1/ in the case that Kx = 0,05, Kv = 0·05 and t = 2, indicates

01

001

0001

a 000 I l...C.J.-l.ll_.-L-L-LLl.J-UJ._---l..-.J

0·01 a I

Fig. I. Dependence of flutter critical wind velocity and frequency on deflection modes in the case
(K, = K, =0·05, g= 2).

a I

001

0001

00001
0001 001 01 10

Fig. 2. Dependence of flutter critical wind velocity and frequency on traveling wave propagation speed.
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that the case m = 2 is the most significant, despite the appearance of the minimum of Vcr depends
on the deflection modes and wgenerally and is not necessarily in the case m = 2. Moreover, it
was well ascertained that this tendency does not depend on the prestressing, if exists, and
scarcely ever depends on the curvatures. Therefore, the case m = 2 will be illustrated in the
following.

The variation of (w - Vcr) curves with respect to the variation of k and 1/ are shown in Fig. 2,
and also (Vcr - 1/ ) relations associated with k are given without prestressing in Fig. 3. Whereas w

01

001

Vcr

L'7
1·0 10 100

Fig. 3. Variation of flutter critical wind velocity due to weight of the roof and length.

4·0

30

20

1·0 m=2
{'2 k·O·2

Kx'KY 'O'05

o 0·005

Epx

! I ! I I

001

Fig. 4. Influence of prestress on flutter critical wind velocity, where 0 Va is that with no prestress.
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increases and Va decreases with increased k for any 1/, the variation of Va becomes slight
gradually against the variation of k according to the increase of 1/. When modified wind velocity
V varies in the range where (w ~ Vcr) curves is given for a 1/, a harmonic neutral vibration of the
roof can be determinate certainly, and then it seems the true flutter critical wind velocity to be
defined as the Vcr which is determined at the limit A/k --> 0 with k --> 0, and where no harmonic
neutral vibration exists. That is, before the fluttering appears the roof keeps repose, and when
wind velocity V gets to the true Vcr the roof changes from the stationary state into dynamic state.
The limit A/ k --> 0 with k --> 0 gives singular point of the aforementioned governing equation (27)
and Va can not be determined, but Fig. 2 indicates that in the range of considerably small k Va is
asymptotical to a constant value and Vcr correspond to k = 0·2 becomes good approximate to the
true flutter critical wind velocity.

Vcr increases with the existance of prestressing. The influence of prestressing on Va is shown
in Fig. 4 for a case of curvature set. In Fig. 4 the magnitude of the prestressing is represented as
corresponding strain as Epx = Nx" /Eh and Epy = Ny" /Eh. When Epx is predetermined Epy can be
calculated from equation (I), and vice versa. Note that this curve is independent of 1/ and
dependent on curvatue~ and A/ k. But, as the maximum deviation from this curve due to the
change of k is within :±:0'05% in the range from k = 0·2 to k -->00, this curve can be applicable for
any k. Flutter critical parameter A is dependent on k and m as shown in Fig. 5, and wcan be
determined from this curve and Va. In the limiting case k --> 00 (steady deflection mode), A takes
as 3·6726.

1·5

'·0

05

100

Fig. 5. Dependence of flutter critical parameter Aon traveling wave propagation speed.

In Fig. 6 Vcr with different sets of curvatues and length-width ratio €are illustrated under the
standerdization with Vcr of the case Kx = 0,05, Ky = 0·05 and €= 2. Therefore, flutter critical state
of hanging roofs of any material, any prestressing, any scales and size and any curvatures in the
range shown in Fig. 6 can be clarified from these figures.

The two dimensional theory treated here is appropriate for large width/length ratio structures
and they correspond to small € in Figs. 6.

An example with practical values
Roof material: Nylon cloth membrane. E=3XI07 kg/m2

, pm = 117·35kg.sec2/m4
, a/L=

0,05, b/2yo = 0,05, €= 2, H/L = 0·3, po = 0·12296 kg. sec2/m4
, m = 2, k = 0·2
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h/L N xo N yo wL (m/sec) Ucr (m/sec)

0·0001 0 0 1·0375 9·38
0·001 0·0005 1·6334 14·78

0·001 0 0 3·2794 29·67
0·001 0·0005 5·1628 46·70

10080604·0o

I-V :vld. Fig.6(b)

1·0 f+--f----'''''-¥------;;>.-£'--;''------::;; ''''''''''----j

2·0

30

(a)

K K
x y

I 0·025 0·025
30 I I 0·05 0·025

m 0·05 0·05
IV 0·10 0·05
V 0·10 0·10

2·0

~

"~~
10

o 2·0 4·') 60 80 10·0

(b)

Figs. 6. Influence of curvature and length-width ratio on flutter critical wind velocity, 1 Va in (a) and (b):
flutter critical wind velocity in the case (Kx = Ky = 0,05, g= 2) with no prestress and 'px = 0,01, respectively.
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APPENDIX

Definite integral representation of Qi which constitutes equation (27) is in need of the
numerical calculation, because some Qi is defined by infinite integrals having singular point and
direct numerical integration procedure is not applicable. Qi can be calculated from the following
functions.

2 2

Qo = L L (-w+qR(p, q)
p=l q=l

2 2

Q, = L L (-1)p+q (Kp + EpxC¥/ + Epy((32)R(p, q)
p=1 q=l

Epx = Nxo /Eh, Epy = N yo /Eh

2 2 {H 2}
Q2= ~l~l (-W+

q
L Zp(o)R(p,q)+;S(p,q)

Q3 = 1.±±(- l)p+q {iW(P, q) + (4)P-l c¥pS(p, q)} +-21 A em {Y(l) - Y(2)}
1r p~l q~l I 1r

Q4 = --2i ±±(-W+
q (~)P-I c¥pW(p, q)--4

i A ei2A {Y(1)_ Y(2)}
1r p~l q~1 I 1r

where

if

A/k -'>0; R(p, q) = 1 (p ,,;q)

=0 (p=q)
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S(p, q) = 7T
2
e-V "p/2) {3Jo (~) - ip • 211 (~) +J2 (~)}/s

W(p, q) = 7T
2e-Op

"p+i
q
"qJl2 UJo(~) {Jo (~q) +iJI (~q)}+;q ~ ip-'iql-'rJ, (~) J, (~q)]

if a q = 0;

2 {() ()}
7T _ i " /2 a p • a p

W(P,q)=2 e p p Jo T -lvIl T .

A. Erdelyi has given the following integraHll],

F(A,O)=_1 f~eiACOShl sinO dt
27T 0 cosh t +cos 0

Applying this result to the two integrals of the following type,

( (1 - X)1/2 e-;ax (~ (_1)_)1/2 _1_ e-1/3" dx d1)

Jo X JI1)-1 1)-X
and

functions X(p) and Y(p) can be represented as follows.

if iA + ipap12 =0; the 2nd term in brackets[ ] to be replaced by -1/27T. If ap= 0;

X(p) = _7T
2

e-iA [{Yo(A) + iJo(A)}/4 +2~A {Jo(A) - e-;A} +~UA)]

Y(p) = ~ e-(I.I.+;p"p/2) [- a: {JI (~) - ivIo (~) + ip e-;p"p/2}

+ . 1. {Jo (IA +~ apl) _e-(;A+ip("p/2))}
A(IA + Ip a p /2) I 2

+ip;p {fJo(A)+¥ !1(A)}{Jo (~)_e-Ip"p/2}

+,i- i (iipy-IJ, (a2P) J,(A) + ip 4~ i (iipr-IrJ, (a2P) !,(A)]
j\ap r=1 Q p r=l

491
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if iA + ip Cip /2 = 0; the 2nd term in brackets [ ] to be replaced by 1/27TA. If Ci p = O~

Y(p) = ~ e- iA [~7T{Yo(A) + iJo(A)} +AI2 {Jo(A) - e- iA
}

and where

00 (-It (A)S+2" { 2 A 2 }
fs(A)=L: '( + )' -2 I+-:-Iog-2 --:-!/J(s+n+l)

"~on. n s. 17T 17T

!/J(m), Gaussian !/J-function.


